C? basysKom

QT QUICK
ON LOW-END i.MX6 DEVICES

Jeremias Bosch

19.08.2019

Cl"j:. basysKkom

Who am |

Jeremias Bosch Dipl. Inf. (FH)
- Since 10+ years at basyskom GmbH
= Senior Developing Project Manager
* Qt Quick, C++
loT, Azure, Cloud

basysKkom GmbH
« is a Qt Service Partner since 2004

- islocated in Darmstadt and Nirnberg

- is employing ~30 people
- is part of the UX Gruppe
provides services (consulting, training, coaching and development) around Qt

- focuses on technical/industrial applications of Qt (HMI and application development)

@ basysKkom

Why this talk

We see that our customers tend to select the smallest possible i.MX6 Device still providing a GPU.

You find yourself, as a developer,
- |n a price sensitive environment,

- Squeezing the last bit of HMI performance from lower end hardware, such as a SoloX.

This talk will discuss two projects, their KPI's and the taken technical decisions to fulfill those KPlI's.

@ basysKkom

SoloX Project

400 Mhz (Cortex A9 & M4)

= 400 Mhz because of thermal reasons. In some situations even only 200 Mhz.

Limited GPU

- Toreduce impact on CPU.
512 MB Memory
800x480 Display
Qt 5.6.3
QML

Heavy Backend Processes (utilizing ~50% of the CPU)
Webserver (Node.js) running a Web-API parallel to the local Qt HMI to serve an Angular Web-App (provided by the same device)

@ basysKkom

KPI's

Dynamic - Fullscreen - Multipass Shader Component
"Fast Boot": Power on — Splash < 10 seconds
- 30 fps
Fullscreen Animations
> 100 Screens

< 70 MB Memory usage

@ basysKkom

Boot Optimizations

System-Level
= Optimize your Kernel

Do not show a Kernel-Splash image

On Application-Level
Focus to start your executable as soon as possible
Load only what is really required to display a first image
- Only load your real application once you displayed that image

Lazy Loading / Lazy Startup

@ basysKkom

Lazy startup organization

Design your application to load in stages and modules
First load the splash screen

- Only after that, start to load the content, logic, dialog system, state machine, IPC (and everything async to each other)

The result: partially loaded HMI during startup

However, the user will see much earlier that 'something' is happening

@ basysKkom

Architecture

Caching vs. Load & Destroy
Caching PRO:

No memory fragmentation

Fast display times

Caching CON:

Time until everything is cached (this is a strategy point)

'Higher initial memory usage'

Load & Destroy PRO:

Lower initial memory usage, lower CPU usage at start

Load & Destroy CON:

High fragmentation lead to higher memory usage over time

Loading on demand causes performance issues

@ basysKkom

Architecture

Caching vs. Load & Destroy

Page Heap Pro:
No structure to keep in mind
Caching is easily possible

Easy to handle complex screen transitions and concepts

Page Heap Con:

Requires external management

Page Stack Pro:
Part of Qt components/controls

Stack allows to push/pop screens in a structured order

Page Stack Con:
Complicated to use in complex situations

Caching is possible but more complicated

@ basysKkom

Architecture

Delegate Reuse
Delegates are expensive
Delegates fragment your memory

Utilize the Complete/Destroy mechanism and "re-parent" the content of your delegates

10

@ basysKkom

Shader and Graphics

CPU Usage on Shaders!

On low-end devices the CPU takes a critical part in handling fragment shaders (i.e. a fullscreen fragment shader on a
SoloX takes ~35% CPU time to compute at close to 60 FPS)

- Avoid complex fragment shaders

Using Textures vs. Using Geometry
For common structures, like rectangles, without gradient, we learned that geometry is the fastest solution
For complex structures, like circles, a texture can be faster

For icons, we found it usually much better (lower memory impact, faster loading times, higher customer satisfaction) to
use white icons and color them with a shader rather than loading colored icons

11

@ basysKkom

Dual Lite Project

1,2 Ghz (Cortex A9, Dual Core) Heavy Backend
2 GB Memory - Multiple communication frameworks in parallel for
] = Controlling the machine itself
1280x800 Display
= Cloud access
Qt 5.9.6 = Providing remote maintenance and supervision options over
two separate interfaces
ML
Q - OPCUA
- Legacy API

12

@ basysKkom

KPls

Smooth User Experience with state of the art transitions
- Complex WYSIWYG-style content editors
> 100 Screens + Dialogs

= Custom Ul framework
18N + VKB support for 36 languages
Dynamic styling

13

@ basysKkom

Architecture

Boot-Time had no relevance — everything can be cached and loaded
Heavy use of page caching and preloading to ensure smooth transitions
Shader-based coloring and shadow generation for improved performance

Using 1D instead of 2D textures where possible
Unfortunately not supported in QML, but can be simulated using a 2D texture with an 1px width or height

Better: Add support for 1D textures by extending the scene graph

14

@ basysKkom

Shader and Graphics

How to upload software-rendered dynamic content efficiently?

QQuicklmageProvider can be used, but every update needs to use a new URL since this APl is not meant for dynamic
content changes and the updated texture will not be visible!

Make sure to disable image caching!

This should be a general remark: Image caching should only be enabled for reoccurring images (e.g. backgrounds for ui controls) and not
for anything else, esp. not large background or content images!

Fillrate can become a problem quickly, so overdraw, esp. with blending enabled, has to be kept as minimal as possible

Blending is enabled for image elements with image-files that have an alpha channel and for rectangles that use the radius
property while anti-aliasing is enabled (which is the default), so use those wisely!

15

@ basysKkom

Rendering Performance Issues — i

]|
| 1
Important Read:
QSG VISUALIZE=batches

- https://doc.qt.io/qt-5/qtquick-visualcanvas-scenegraph-renderer.html

Renderer::render () QSGAbstractRenderer (0x318d2910) "rebuild: none"
Rendering:
-> Opaque: 8 nodes in 1 batches...
= = = = = 7 -> Alpha: 70 nodes in 33 batches...
HOW to Investlgate your renderlng plpellne. - 0x4d143670 [retained] [noclip] [opaque] [merged] Nodes: 8
- 0x4d1437b0 [retained] [clip] [alpha] [unmerged] Nodes:
- 0x4d143bf0 [retained] [clip] [alpha] [merged] Nodes: 1

—

- Visualize/Output the action of QSceneGraph using
- QSG VISUALIZE=batches

QOSG RENDERER DEBUG=render

QQuickWindowQmlImpl OML 41 (0x2e92a598 active exposed, visibility=QWindow::Visibility(Windowed)..
gt.scenegraph.time.renderer: time in renderer: total=0ms, preprocess=0, updates=0, binding=0, ..
— gt .scenegraph.time.renderloop: Frame rendered with 'threaded' renderloop in 15ms, sync=0, rend.

- QSG_RENDERER_DEBUG render gt.scenegraph.time.renderloop: Frame prepared with 'threaded' renderloop, polish=0, lock=0, bl.
gt.scenegraph.time.renderer: time in renderer: total=0ms, preprocess=0, updates=0, binding=0, ..

gt.scenegraph.time.renderloop: Frame rendered with 'threaded' renderloop in 1lé6ms, sync=0, rend.

[] QSG RENDER TIMING:]_ gt.scenegraph.time.renderloop: Frame prepared with 'threaded' renderloop, polish=0, lock=0, bl..
— — gt.scenegraph.time.renderer: time in renderer: total=0ms, preprocess=0, updates=0, binding=0, ..
gt.scenegraph.time.renderloop: Frame rendered with 'threaded' renderloop in 15ms, sync=0, rend.
gt.scenegraph.time.renderer: time in renderer: total=0ms, preprocess=0, updates=0, binding=0, ..

Unexpected high CPU Load might relate to a batching issue 0SG RENDER TIMING=1

16

Cl'j_\. basysKkom

Some Demo:)

F
;

Come visit our booth!

1 B 1 8y 0O0F =1
i O 3 B 5 B » B

Current speed 10 A

— TOUCH —

{"1:;1. basysKom

g

17

@ basysKkom

Conclusion

Yes you can create smooth running modern HMI’s on low-end i.MX6 Devices
Keep the limitations in mind
= Always test on hardware

Define KPI's of what is acceptable performance

Attack issues when they first occur and build rules from your learning's

Caching helps to make the memory usage more predictable

18

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

