
QT QUICK
ON LOW-END i.MX6 DEVICES
Jeremias Bosch

19.08.2019

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

2

Who am I
Jeremias Bosch Dipl. Inf. (FH)

▪ Since 10+ years at basysKom GmbH

▪ Senior Developing Project Manager

▪ Qt Quick, C++

▪ IoT, Azure, Cloud

basysKom GmbH

▪ is a Qt Service Partner since 2004

▪ is located in Darmstadt and Nürnberg

▪ is employing ~30 people

▪ is part of the UX Gruppe

▪ provides services (consulting, training, coaching and development) around Qt

▪ focuses on technical/industrial applications of Qt (HMI and application development)

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

3

Why this talk

We see that our customers tend to select the smallest possible i.MX6 Device still providing a GPU.

You find yourself, as a developer,

▪ In a price sensitive environment,

▪ Squeezing the last bit of HMI performance from lower end hardware, such as a SoloX.

This talk will discuss two projects, their KPI’s and the taken technical decisions to fulfill those KPI's.

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

4

SoloX Project
400 Mhz (Cortex A9 & M4)

▪ 400 Mhz because of thermal reasons. In some situations even only 200 Mhz.

Limited GPU

▪ To reduce impact on CPU.

512 MB Memory

800x480 Display

Qt 5.6.3

QML

Heavy Backend Processes (utilizing ~50% of the CPU)

Webserver (Node.js) running a Web-API parallel to the local Qt HMI to serve an Angular Web-App (provided by the same device)

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

5

KPI’s
▪ Dynamic - Fullscreen - Multipass Shader Component

▪ "Fast Boot": Power on Splash < 10 seconds→

▪ 30 fps

▪ Fullscreen Animations

▪ > 100 Screens

▪ < 70 MB Memory usage

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

6

Boot Optimizations

System-Level

▪ Optimize your Kernel

▪ Do not show a Kernel-Splash image

On Application-Level

▪ Focus to start your executable as soon as possible

▪ Load only what is really required to display a first image

▪ Only load your real application once you displayed that image

▪ Lazy Loading / Lazy Startup

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

7

Lazy startup organization

Design your application to load in stages and modules

▪ First load the splash screen

▪ Only after that, start to load the content, logic, dialog system, state machine, IPC (and everything async to each other)

The result: partially loaded HMI during startup

▪ However, the user will see much earlier that 'something' is happening

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

8

Architecture

Caching vs. Load & Destroy

▪ Caching PRO:
▪ No memory fragmentation

▪ Fast display times

▪ Caching CON:
▪ Time until everything is cached (this is a strategy point)

▪ 'Higher initial memory usage'

▪ Load & Destroy PRO:
▪ Lower initial memory usage, lower CPU usage at start

▪ Load & Destroy CON:
▪ High fragmentation lead to higher memory usage over time

▪ Loading on demand causes performance issues

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

9

Architecture

Caching vs. Load & Destroy
▪ Page Heap Pro:
▪ No structure to keep in mind
▪ Caching is easily possible
▪ Easy to handle complex screen transitions and concepts

▪ Page Heap Con:
▪ Requires external management

▪ Page Stack Pro:
▪ Part of Qt components/controls

▪ Stack allows to push/pop screens in a structured order

▪ Page Stack Con:
▪ Complicated to use in complex situations

▪ Caching is possible but more complicated

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

10

Architecture

Delegate Reuse
▪ Delegates are expensive

▪ Delegates fragment your memory

▪ Utilize the Complete/Destroy mechanism and "re-parent" the content of your delegates

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

11

Shader and Graphics

CPU Usage on Shaders!

▪ On low-end devices the CPU takes a critical part in handling fragment shaders (i.e. a fullscreen fragment shader on a
SoloX takes ~35% CPU time to compute at close to 60 FPS)

▪ Avoid complex fragment shaders

Using Textures vs. Using Geometry

▪ For common structures, like rectangles, without gradient, we learned that geometry is the fastest solution

▪ For complex structures, like circles, a texture can be faster

▪ For icons, we found it usually much better (lower memory impact, faster loading times, higher customer satisfaction) to
use white icons and color them with a shader rather than loading colored icons

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

12

Dual Lite Project

1,2 Ghz (Cortex A9, Dual Core)

2 GB Memory

1280x800 Display

Qt 5.9.6

QML

Heavy Backend

▪ Multiple communication frameworks in parallel for
▪ Controlling the machine itself

▪ Cloud access

▪ Providing remote maintenance and supervision options over
two separate interfaces

▪ OPC UA

▪ Legacy API

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

13

KPIs

Smooth User Experience with state of the art transitions

▪ Complex WYSIWYG-style content editors

▪ > 100 Screens + Dialogs

▪ Custom UI framework
▪ I18N + VKB support for 36 languages

▪ Dynamic styling

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

14

Architecture
▪ Boot-Time had no relevance – everything can be cached and loaded

▪ Heavy use of page caching and preloading to ensure smooth transitions

▪ Shader-based coloring and shadow generation for improved performance

▪ Using 1D instead of 2D textures where possible
▪ Unfortunately not supported in QML, but can be simulated using a 2D texture with an 1px width or height

▪ Better: Add support for 1D textures by extending the scene graph

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

15

Shader and Graphics

How to upload software-rendered dynamic content efficiently?

▪ QQuickImageProvider can be used, but every update needs to use a new URL since this API is not meant for dynamic
content changes and the updated texture will not be visible!

▪ Make sure to disable image caching!

▪ This should be a general remark: Image caching should only be enabled for reoccurring images (e.g. backgrounds for ui controls) and not
for anything else, esp. not large background or content images!

▪ Fillrate can become a problem quickly, so overdraw, esp. with blending enabled, has to be kept as minimal as possible

▪ Blending is enabled for image elements with image-files that have an alpha channel and for rectangles that use the radius
property while anti-aliasing is enabled (which is the default), so use those wisely!

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

16

Rendering Performance Issues

Important Read:

▪ https://doc.qt.io/qt-5/qtquick-visualcanvas-scenegraph-renderer.html

How to investigate your rendering pipeline?

▪ Visualize/Output the action of QSceneGraph using
▪ QSG_VISUALIZE=batches

▪ QSG_RENDERER_DEBUG=render

▪ QSG_RENDER_TIMING=1

Unexpected high CPU Load might relate to a batching issue

QSG_VISUALIZE=batches

Renderer::render() QSGAbstractRenderer(0x318d2910) "rebuild: none"
Rendering:
 -> Opaque: 8 nodes in 1 batches...
 -> Alpha: 70 nodes in 33 batches...
 - 0x4d143670 [retained] [noclip] [opaque] [merged] Nodes: 8 …
 - 0x4d1437b0 [retained] [clip] [alpha] [unmerged] Nodes: 1 …
 - 0x4d143bf0 [retained] [clip] [alpha] [merged] Nodes: 1 …

QSG_RENDERER_DEBUG=render

QQuickWindowQmlImpl_QML_41(0x2e92a598 active exposed, visibility=QWindow::Visibility(Windowed)…
qt.scenegraph.time.renderer: time in renderer: total=0ms, preprocess=0, updates=0, binding=0, …
qt.scenegraph.time.renderloop: Frame rendered with 'threaded' renderloop in 15ms, sync=0, rend…
qt.scenegraph.time.renderloop: Frame prepared with 'threaded' renderloop, polish=0, lock=0, bl…
qt.scenegraph.time.renderer: time in renderer: total=0ms, preprocess=0, updates=0, binding=0, …
qt.scenegraph.time.renderloop: Frame rendered with 'threaded' renderloop in 16ms, sync=0, rend…
qt.scenegraph.time.renderloop: Frame prepared with 'threaded' renderloop, polish=0, lock=0, bl…
qt.scenegraph.time.renderer: time in renderer: total=0ms, preprocess=0, updates=0, binding=0, …
qt.scenegraph.time.renderloop: Frame rendered with 'threaded' renderloop in 15ms, sync=0, rend…
qt.scenegraph.time.renderer: time in renderer: total=0ms, preprocess=0, updates=0, binding=0, …

QSG_RENDER_TIMING=1

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

17

Some Demo :)

 Come visit our booth!

QT QUICK ON LOW-END I.MX6 DEVICES
JEREMIAS BOSCH

18

Conclusion

Yes you can create smooth running modern HMI’s on low-end i.MX6 Devices

▪ Keep the limitations in mind

▪ Always test on hardware

▪ Define KPI’s of what is acceptable performance
▪ Attack issues when they first occur and build rules from your learning's

▪ Caching helps to make the memory usage more predictable

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

